

ELIZADE UNIVERSITY

ILARA-MOKIN

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

1st SEMESTER EXAMINATION

2017 / 2018 ACADEMIC SESSION

COURSE CODE: MTH 203

COURSE TITLE: Linear Algebra I

COURSE LEADER: Dr. A. Adesanya

DURATION: $2^{1}/_{2}$ Hours

gren

HOD's SIGNATURE

INSTRUCTION:

Candidates should answer any FOUR Questions.

Students are warned that possession of any unauthorized materials in an examination is a serious offence.

Q1. (a) Define the term Vector Space.

(b) Let V be the set of vectors [2x - 3y, x + 2y, -y, -4x] with $x, y \in \mathbb{R}^2$.

Addition and scalar multiplication are defined in the same way as on vectors.

Prove that V is a Vector Space.

Q2. (a) Define Vector Subspace.

Determine if the following given set is a subspace of the given vector space.

- (i) Let W be the set of all points (x, y) from R^2 in which $x \ge 0$. Is this subspace of R^2
- (ii) Is $5 = \left\{ \begin{bmatrix} a \\ b \\ 0 \end{bmatrix} : a, b \in R \right\}$ a subspace of \mathbb{R}^3 . Justify your claim.
- (b) Let $W = \{(x,y,z) \in \mathbb{R}^3 | 3x = 2y\}$. Prove that W is a Subspace.
- Q3. (a) Differentiate between Linearly dependent set and linearly independent set.
 - (b) Determine whether or not $\{V_1, V_2, V_3, \}$ is linearly independent , where

$$V_1 = (1, 1, 2, 1)$$
, $V_2 = (0, 2, 1, 1)$ and $V_3 = (3, 1, 2, 0)$.

(c) What do you understand by Linear combination and Linear Span?

Express V_3 as a linear combination of V_1 and V_2 given $V_2 = (1,0,1)$,

$$V_2 = (-1, 1, 0)$$
 and $V_3 = (1, 2, 3)$.

Q4. . (a) Define a linear transformation.

Let $T: \mathbb{R}^2 \to \mathbb{R}^1$ be defined by $T[(X_1, X_2)] = X_1^2 + X_2^2$. Show that T is not linear.

(b) Let T be the linear transformation defined by T(x,y) = (3x + 5y, 5x - 2y)

Computer the matrix T in the basis $\{e_1 = (1,3), e_2 = (-1,2)\}.$

Hence prove that $[T]_{\mathfrak{g}}[V]_{\mathfrak{g}} = [T(V)]_{\mathfrak{g}}$ where V = (2, -7).

Q5. (a) Define $L: V \to U$ by $L[X_1, X_2] = [X_1, X_2 - X_1, X_2]$.

Show that L is a linear transformation from $R^2 \to R^3$

(b) Let $L: \mathbb{R}^{3} \to \mathbb{R}^{4}$ be defined by

 $L(X_1, X_2, X_3) = (-6X_2 + 2X_3, X_1 - X_2 + X_3, -X_1 + X_2 - 6X_3, 3X_1 - X_2 + 4X_3).$

Compute $L(e_1)$, $L(e_2)$, $L(e_3)$. Hence find the matrix representation and compute AX, where $X = (X_1, X_2, X_3)$.

Q6. Let $V = R^2$ and $U = R^3$.

$$L: V \to U \ by \ L(X_1, X_2) = (X_1 - X_2, X_1, X_2)$$

Let
$$F = \{(1,1), (-1,1)\}\ and\ G = \{(1,0,1), (0,1,1), (1,1,0)\}\$$

- (a) Find the matrix representation of L using the standard bases in both $V \ \alpha ud \ U$.
- (b) Find the matrix representation of L using the standard basis in V and the basis G in U.
- (c) Find the matrix representation of L using the basis F in \mathbb{R}^2 and the standard basis in \mathbb{R}^3 .